Quiz 3

Section
Score
(5 points) 1. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$
2 x^{2}+4 y^{2}+3 z^{2}=1
$$

Solution: Take partial derivative of x and y by both sides, we have

$$
\begin{aligned}
& 4 x+6 z \frac{\partial z}{\partial x}=0 \\
& 8 y+6 z \frac{\partial z}{\partial y}=0
\end{aligned}
$$

Therefore, $\frac{\partial z}{\partial x}=-\frac{2 x}{3 z}, \frac{\partial z}{\partial x}=-\frac{4 y}{3 z}$
(5 points) 2. Use differentials to estimate the amount of tin in a closed can with diameter 10 cm and 16 cm if the tin is 0.06 cm thick.

Solution: Since $V=\pi r^{2} h, d V=2 \pi r h d r+\pi r^{2} d h$. By instruction, $r=5 \mathrm{~cm}, h=16 \mathrm{~cm}, d r=$ $0.06 \mathrm{~cm}, d h=0.12 \mathrm{~cm}$. Therefore

$$
d V=2 \pi(5)(16)(0.06)+\pi(5)^{2}(0.12)=39.5841
$$

(5 points) 3. Explain why the function is differentiable at the given point.

$$
f(x, y)=\frac{x}{x+y} \text { at }(2,3)
$$

Solution: $\frac{\partial f}{\partial x}=\frac{y}{(x+y)^{2}}, \frac{\partial f}{\partial y}=-\frac{x}{(x+y)^{2}}$, it is clear that both f_{x} and f_{y} exist near $(2,3)$, in addition, both f_{x} and f_{y} are continuous at $(2,3)$. Therefore, $f(x, y)$ is differentiable.

